Classification of Ictal and Interictal Eeg Signals

نویسندگان

  • Mohammad Zavid Parvez
  • Manoranjan Paul
چکیده

An electroencephalogram (EEG) is a graphical record of ongoing electrical activity produced by firing of neurons of the human brain due to internal and/or external stimuli. Feature extraction and classification of the EEG signals are used for diagnosis the epileptic seizure (i.e., physical changes in behaviour that occur due to abnormal electrical activity in the brain). Classification of Ictal (i.e., seizure period) and Interictal (i.e., interval between seizures) EEG signals is very important for the treatment and precaution of an epileptic patient. However, the classification accuracy of Ictal and Interictal EEG signals is not at satisfactory level due to their non-abruptness phenomenon using the existing seizure and non-seizure classification methods. Moreover, the features of Ictal and Interictal signals are not consistence in different locations for an epileptic period. In this paper we present new approaches for features extraction of Ictal and Interictal including various transformations such as discrete cosine transform (DCT), DCT-discrete wavelet transform, and singular value decomposition. The least square support vector machine is applied on the features for classifications. Results demonstrate that our proposed methods outperform the existing state-of-the-art method in terms of classification accuracy for the large benchmark dataset in different brain locations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Epileptic Seizure Detection by Exploiting Temporal Correlation of EEG Signals

Electroencephalogram (EEG), a record of electrical signal to represent the human brain activity, has great potential for the diagnosis to treatment of mental disorder and brain diseases such as epileptic seizure. Features extraction and classification of EEG signals is the crucial task to detect the stage of ictal (i.e., seizure period) and interictal (i.e., period between seizures) signals for...

متن کامل

Ictal and Interictal Electroencephalography of Mesial and Lateral Temporal Lobe Epilepsy; A Comparative Study

Background: Epilepsy is considered as one of the most important disorders in neurology. Temporal lobe epilepsy is a form of epilepsy including two main types of mesial and lateral (neocortex). Objectives: Determination and comparison of electroencephalogram (EEG) pattern in the ictal and interictal phases of mesial and lateral temporal lobe epilepsy. Materials and Methods: This cross-sectiona...

متن کامل

Features Extraction for Ictal and Interictal EEG Signals using EMD and DCT

Electroencephalogram (EEG) is a record of electrical signal to represent the human brain activity. Many researchers are working on human brain as they are fascinated by the idea of secret, thought and feeling from the external and/or internal stimuli. Feature extraction, analysis, and classification of EEG signals are still challenging issues for researchers due to the variations of the brain s...

متن کامل

Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy

Epilepsy is an electrophysiological disorder of the brain, the hallmark of which is recurrent and unprovoked seizures. Electroencephalogram (EEG) measures electrical activity of the brain that is commonly applied as a non-invasive technique for seizure detection. Although a vast number of publications have been published on intelligent algorithms to classify interictal and ictal EEG, it remains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012